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Abstract
This is the second part of the investigation started in Reiris 2014 Stationary
solutions and asymptotic flatness I Class. Quantum Grav. 31 155012. We
prove here that strongly stationary ends with cubic volume growth are weakly
asymptotically flat. Combined with the results in part I, this shows that
strongly stationary ends are asymptotically flat with Schwarzschildian fall off.

Keywords: mathematical general relativity, stationary solutions, asympto-
tic flatness
PACS numbers: 02.40.-k, 04.20.-q

1. Introduction

In [8] we defined weakly asymptotically flat (WAF) stationary ends, a notion generalizing as
much as possible the standard one of asymptotically flat (AF) stationary ends in general
relativity, and proved that they have to be a posterioriAFwith Schwarzschildian fall off. In this
second paper we prove that strongly stationary ends, whose definition eliminates any a priori
assumption on the asymptotics, are also WAF and therefore AF with Schwarzschildian fall off.

For the purposes of this paper a stationary data consists of a three-manifold M, a Rie-
mannian metric g, a twist one-form ω and a positive lapse function u satisfying the stationary
vacuum Einstein equations
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Stationary data ωg u( , , ) arise naturally from strictly stationary vacuum space-times in
general relativity when we describe them only in terms of data in the quotient three-space.
We refer to [8] for an account on how to reconstruct the stationary vacuum space-time
from ωM g u( ; , , ) (it is worth pointing out that g is not the physical quotient metric but a
conformal transformation of it [8]). The associated space-time plays no technical role in this
article and we will not refer to it anymore. The physical motivations of this research can be
found in [8].

If the manifold M of a stationary data ωM g u( ; , , ) is diffeomorphic to 3 minus an open
ball, the metric g is complete and u is bounded below away from zero, then ωM g u( ; , , ) is
said to be a strongly stationary end. The condition on u, namely that ⩾ >u p u( ) 00 for all

∈p M , plays no role in this article. From now on the manifold of strong stationary ends will
be denoted by E.

Let ωE g u( ; , , ) be a strong stationary end. Then (E, g) is said to have cubic volume
growth if

μ
∂

= >
→∞

( )E r

r
lim

Vol ( , )
0, (2)

r

g

3

where ∂ = ∈ ∂ ⩽ E r p E p E r( , ) { : dist ( , ) }g g is the metric-tubular neighborhood of ∂E and

radius >r 0. Note (by inspecting the first equation in (1)), that the Ricci curvature of
stationary solutions is non-negative. Therefore the quotient ∂ E r rVol ( ( , ) )/g

3 is mono-

tonically non-increasing in r by the Bishop–Gromov monotonicity and the limit (2) exists. If
μ = 0 then (E, g) is said to have less than cubic volume growth.

The purpose of this article is then to prove:

Theorem 1.1 Let E be a strongly stationary end having cubic volume growth. Then E is
WAF and therefore AF with Schwarzschildian fall off.

The definition of the WAF end is recalled in the next section after the necessary notation
and terminology is introduced, but before we pass into that we would like to make a couple of
comments on the hypothesis of theorem 1.1. On one hand, as was indicated in [8], any
strongly stationary end enjoys necessarily cubic volume growth due to quite general geo-
metric facts, (see [9]). From this and theorem 1.1 we deduce therefore that strongly stationary
ends are always AF with Schwarzschildian fall off (cf corollary 1.6 in [8]). On the other hand,
stationary solutions with cubic volume growth and connected at infinity1 turn out to be
diffeomorphic to 3 minus an open ball outside a compact set and therefore AF with
Schwarzschildian fall off. This property can be proved by suitably adjusting the results of this
article and will be discussed elsewhere.

1.1. Background material I

We import here the material introduced in [8] and that will be required for the technical
discussions. We introduce too the most relevant terminology and notation. The definition of
the WAF end is given at the end.

1 Recall that a non-compact manifold M with compact boundary is said to be connected at infinity if for every
compact set ⊂K M1 there is another compact set K2 containing K1 such that M K\ 2 is connected.
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Distance

• The distance between two points p and q in a connected manifold (M, g) is

=  p q C M p qdist ( , ) inf {length ( ): a curve in joining to }g g p q p q, ,
1 . (M, g) is said to

be complete if M( , dist )g is complete as a metric space. The distance from a point p to a

set Ω ⊂ M will be denoted by Ω Ω= ∈p p q qdist ( , ) inf {dist ( , ): }g g . More generally

the distance between two sets Ω1 and Ω2 is denoted
by Ω Ω Ω Ω= ∈ ∈p q p qdist ( , ) inf {dist ( , ): , }g g1 2 1 2

2.

• When one considers the metric induced by g on a submanifold N of a manifold (M, g)
it may become necessary to distinguish it from the restriction to N of the metric induced
by g on M (which do not necessarily coincide). When this is necessary we will use
the notation dist N g( , ). For instance if ⊂N g M g( , ) ( , ) then the diameter of N with respect

to the metric induced by g on N will be denoted by
=N p q p q Ndiam ( ) sup {dist ( , ): and in }N g N g( , ) ( , ) and called the proper diameter.

• The metric induced on stationary ends (E, g) will be noted by p qdist ( , ) and always
without the subindex g. The distance function to the boundary ∂E of stationary ends will
be denoted with total exclusivity by d(p) or simply d, that
is, = ∂ = ∈ ∂d p p E p q q E( ) dist ( , ) inf {dist ( , ): }.

Scaling

• Let E be a strongly stationary end. Then, for any real number >r 0 we will denote by g
r

to the scaled metric

=g
r

g:
1

.
r 2

Tensors and metric quantities constructed out of g
r
will be subindexed with an r. For

instance, for the scalar curvature we have = =R R R r/r g
2

r
and for the Ricci curvature

= =Ric Ric Ricr gr
(although =Ric Ricr we will keep including the subindex r). Also,

=d p d p r( ) ( )/r . This way of notating will be used extensively throughout the article and is
crucial in keeping track of it.

Area, second fundamental form and mean curvature

• The Riemannian metric induced on compact embedded two-surface ⊂S E will be
denoted by h and the h-area of S by A(S). Following the notation introduced before, the
metric induced in S from g

r
is denoted by hr and the hr-area of S, i.e. A S r( )/ 2, is denoted

by A S( )r . The second fundamental form of S (having a fixed normal) will be denoted by
Θ and the mean curvature Θtrh by θ.

Annuli and metric annuli

• Let E be a strongly stationary end. Then for any < <a b0 we will denote by  a b( , )
(resp.  a b[ , ]) the set

2 Properly speaking this is not a metric in the subsets ofM. In particular the distance is zero if for instance they share
a point but are different sets.
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= ∈ < < = ∈ ⩽ ⩽ a b p E a d p b a b p E a d p b( , ) { : ( ) }, (resp. [ , ] { : ( ) } ),

and call it the open (resp. closed) metric annulus of radii a and b. The notation  a b( , )
(resp. a b[ , ]) will always refer to open (resp. closed) metric annuli defined with respect to
the unscaled metric g but the subindex r is included when the (open or closed) metric annuli

are defined with respect to the scaled metric =g g r/
r

2, namely

= ∈ < < = ∈ ⩽ ⩽ a b p E a d p b a b p E a d p b( , ) { : ( ) } and [ , ] { : ( ) }.r r r r

This is consistent with the notation introduced before. Note that for all >r 0 we have
= ar br a b( , ) ( , )r and = ar br a b[ , ] [ , ]r .

• Standard open annuli in 3 will be denoted by  a b( , )3 , namely,

  = ∈ < < = ⧹ a b x a x b B o b B o a( , ) { : } ( , ) ( , ),3
3 3 3

where for any >c 0 B o c( , )3 is the open ball of the center of the origin =o (0, 0, 0) and

radius c in 3. As before, closed annulus in 3 are denoted
by  = ∈ ⩽ | | ⩽ a b x a x b[ , ] { : }3

3 .
• A manifold Ω is said to be an open (resp. closed) annulus if Ω is diffeomorphic to

 (1, 2)3 (resp.  [1, 2]3 ). A metric annulus doesnʼt have to be necessarily an open
annulus in this sense. In general, the shape of the metric annuli can be wild.

Curvature

• An essential property of the curvature of stationary solutions is M T Andersonʼs a priori
curvature decay [1]. It says that there is a universal constant > 0 such that for any
stationary solution ωM g u( ; , , ) and ∈p M we have ∣ ∣ ⩽ ∂Ric p p M( ) /dist ( , )2 .3 In
strongly stationary ends ωE g u( ; , , ) this reads

⩽ Ric p d p( ) ( ),2

for all ∈p E. In particular for any ∈ p a b( , )r , the Ricci curvature of the scaled metric g
r

is bounded as | | ⩽ Ric p a( ) /r r
2.

Norms and convergence of Riemannian manifolds

• Given a tensor field U (of any valence) on a region Ω of a manifold (M, g), the Cg
i-norm

of U over Ω is defined as

∑∥ ∥ =Ω
Ω∈ =

=

( )U U p: sup ( ) .C
p j

j i
j

g
( )

0
g
i

Of course∥ ∥ ⩽ ∥ ∥Ω Ω+U UC C( ) ( )g
i

g
i 1 . The subindex g will be suppressed when Ω is a region

of the Euclidean three-space, namely we will write Ci.

All we will need about the convergence of smooth Riemannian manifolds will be
restricted to the following definition (which is not the most general [7]). Let Ω g( , )m m

be a
sequence of smooth, compact, connected three-manifolds with smooth boundary and let

3 There is a caveat here. The curvature estimate provided in theorem 0.2 of [1] is (as written) for the space-time
metric and not for the metric g. However the proof of that theorem is achieved by proving first the estimate
| | ⩽ ∂Ric p p M( ) /dist ( , )g g

2 (see cf step I in [1]) that is all we need here.
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Ω∞ ∞g( , ) also be smooth, compact, connected three-manifold with smooth boundary. Then,
Ω g( , )m m

converges to Ω∞ ∞g( , ) in Ci, ⩾i 2, if there are diffeomorphisms φ Ω Ω→∞:
m m such

that *φ∥ − ∥ →Ω∞ ∞ ∞
g g 0( )m m Cg

i where *φ g
m m

is the pull-back of g
m
by φ

m
. The definition is the

same if we do not require compactness on the Ωm and Ω∞ but assume uniformly bounded
diameters. A sequence of smooth tensors Um converge to a smooth tensor ∞U in Ci, ⩾i 0,
if *φ∥ − ∥ →Ω∞

∞ ∞
U U 0( )m m Cg

i

WAF ends

• The definition of WAF end is as follows. We refer the reader to [8] for further comments
about the definition.

Definition 1.2 A strongly stationary end ωE g u( ; , , ) is WAF if for every ⩾i 2, ⩾l 1 and
divergent sequence → ∞rm , there is a sequence of open annuli Ω ⊂ Em such that,

(W1) Ω⊂ (1/2, 2 )r
l

mm
for every m.

(W2) Ω g( , )m rm
converges in Ci to the flat annulus  

 g( (1/2, 2 ), )l
3 3 .

(W3) The scaled distance functions drm
(restricted to Ωm) converge in C 0 to the distance to

the origin in 3 (restricted to  (1/2, 2 )l3 ).

(W4) Every Ω̄m is a closed annulus and separates ∂E from infinity, namely, ∂E belongs to a

bounded component of Ω⧹ ¯E m for all m.

Figure 1 illustrates a WAF end along with some of the annuli Ωm.

1.2. Background material II

The material contained in this section is used specifically in this article.

Regularity properties of the distance function

• We summarize here quite standard properties of the distance function that have a
technical relevance and will justify several operations later. The reader can consult the
references for further information.

Let M be a non-compact smooth manifold with compact boundary and let g be a
smooth complete metric with ⩾Ric 0. Let dist be the metric induced by g on M and let d
be the distance function to ∂M , that is = ∂d p p M( ) dist ( , ). The function d is
semiconcave ([6], proposition 3.4) and therefore d is locally of bounded variation ([2]
theorem 2.3.1). In particular Δd is a Radon measure and for any smooth ϕ of compact

support in MInt ( ) we have  ∫ ∫Δ ϕ ϕ= −d V d V( ) d , d (note the difference in

fonts between d (distance) and d (differential)). By the triangle inequality the function d
is also 1-Lipschitz, that is | − | ⩽d p d q p q( ) ( ) dist ( , ).

For every ∈ ∂p M , let γ τ( )
p

be the geodesic in M starting perpendicularly to ∂M at p

(when τ = 0). The parameter τ ⩾ 0 is assumed here to be the arc-length from p. For
every ∈ ∂p M let also τ τ τ γ τ= = dsup { : ( ( ) ) }p p

. Let  be the subset of ∂ × ∞M [0, )

given by τ τ τ= ∈ ∂ < < p p M: { ( , ): and 0 }p and consider the map ℐ → M: given

by τ γ τℐ =p( , ) ( )
p

. Then, the set = ℐ  M: \ ( ) is closed and of measure zero (the cut-

locus) and ℐ is a diffeomorphism into the image.
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As | | =d 1 on M \ , then every level set τ τˆ = ⧹− d( ) : ( )1 is an embedded

submanifold of M of dimension two. Moreover, for almost every τ the area

(2-Hausdorff measure) of τ τ= −S d( ) ( )1 coincides with the area τˆA S( ( ) ) of τŜ ( )
[3]. Also for almost every τ the function τ τ→ <p d pVol ( { , ( ) } ) is differentiable with

τ-derivative equal to τ̂A ( ( ) ). The τʼs for which this holds will be called non-
exceptional.

The pull-back by ℐ of the volume element in ⧹M can be written as τ=V J Ad d d 0

where Ad 0 is the area element in ∂M (with the induced metric from g) and where
J is a smooth and positive function. For every τ ∈ p( , ) we have

τ θ τ∂ = ℐτ J p p( ln ) ( , ) ( ( , ) ) where θ τℐ p( ( , ) ) is the mean curvature of τ̂ ( ) at
τℐ p( , ) and in the direction of γ τ′ ( )p . Also, from the focussing equation4 and the

assumption ⩾Ric 0 we have θ θ∂ ⩽ −τ /22 . This implies easily that
θ τ τℐ − ⩽p( ( , ) ) 2/ 0 for all τ ∈ p( , ) . In other words τ∂ − ⩽τ J( ln 2/ ) 0. From this

it can be shown that the function τ τˆA S( ( ) )/ 2 is monotonically non-increasing in τ
(although it is not necessarily continuous) [3].

Convergence of stationary solutions

• The following is essentially a restatement of lemma 1.3 in [1] with some necessary but
minor modifications5.

Figure 1. Representation of a WAF end along with the annuli Ωm and the metric

annuli  ( )1/2, 2r
l

m

4 θ Θ γ γ′ = −| | − ′ ′Ric ( , )2 .
5 We could not validate lemma 1.3 as it is written. I would like to thank Michael Anderson for discussions about
this statement.
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Theorem 1.3. Let ωM g u( ; , , )m m m m be a sequence of stationary solutions. Let ⊂N Mm m be a
sequence of connected open regions with compact closure and such that,

Γ⩾ ⩽ ∂ ⩾( ) ( ) ( )N V N D N MVol , diam , and dist , ,( )g m N g m g m m0 , 0 0m m m m

for some >V 00 , < ∞D0 , Γ > 00 and for all m. Then, for every δ Γ< 0 there is a sequence
of compact manifolds with smooth boundary Ωm with Ω δ⊂ ⊂ N N( , )m m g mm

such that

(after scaling ωm and um if necessary) Ω ωg u( ; , , )m m m m has a subsequence converging in ∞C

to a stationary solution Ω ω∞ ∞ ∞ ∞g u( ; , , ), where Ω∞ is a compact manifold with

smooth boundary.

Above γ γ= ∈ < N p M p N( , ) { : dist ( , ) }g m m g mm m
is the metric-tubular neighborhood of

Nm and radius γ . Note that it is the proper diameter of Nm, the one that is uniformly bounded
by D0

6. The reader may find it curious that no condition on the curvature is necessary. The
reason for this is that the curvature is automatically uniformly bounded on Ωm by virtue of
Andersonʼs estimate, precisely Γ δ| | ⩽ −Ric p( ) /( )0

2 for any Ω∈p m.

2. Proof of theorem 1.1

The proof of theorem 1.1 is structured as follows. In proposition 2.1 we discuss a basic and
general property of the Laplacian of the distance function (to the boundary) in manifolds
with non-negative Ricci curvature. This is then used in proposition 2.2 to study the limit
(when it exists) of scalings of the distance function. The proposition is crucial to prove the
central lemma 2.3 which, in rough terms, shows the existence of ‘almost’ Euclidean annuli
far away from the boundary of strongly stationary ends having cubic volume growth. We
use this lemma in proposition 2.4 to study the global geometry of ends and this paves the
way to prove finally in theorem 2.7 that strongly stationary ends with cubic volume growth
are WAF.

Proposition 2.1. Let (M, g) be a complete smooth Riemannian manifold with ⩾Ric 0.
Suppose that M is non-compact and has a non-empty and compact boundary. Let d be the
distance function to ∂M , that is = ∂d p p M( ) dist ( , ). Then,

(i) For every smooth and non-negative function ϕ with support in MInt ( ) we have

∫ Δ ϕ− ⩾
⎡
⎣⎢

⎤
⎦⎥d

d V
2

( ) d 0.
M

In other words the Radon measure Δ−d d2/ is non-negative in MInt ( ).
(ii) For every < <a b0 and divergent sequence → ∞rm we have

∫ Δ− =
→∞

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ( )

d
d Vlim

2
d 0.

r a b r
r r r

( , )m rm m

m m m

6 In other words ⩽( ) N Ddiam ( )Nm gm m, 0 means that for every ε > 0 and p and q in Nm there is a C1 curve in Nm with
g

m
-length less than ε+D0 .
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Proof.

(i) We compute

 ∫ ∫ ∫

∫ ∫

Δ ϕ ϕ ϕ τ

ϕ ϕ τ

= − = ∂

= − ∂

τ

ν τ ν τ↓ ∂
−

⎡
⎣⎢

⎤
⎦⎥





( )

( )( )

d V d V J A

J A p J A

( ) d , d d d

lim ( ) d ( ) d d ,

M M

M
p

0

0
, 0 0p

where to pass from the second to the third integral (where we are avoiding the cut-locus) we

used that the integrand  ϕd, is in H1,2 and that the cut-locus has measure zero. Then,

∫ ∫ ∫Δ ϕ ϕ ϕ
τ

τ− = + −
∂

⩾
ν τ ν

τ

↓ ∂
−

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟( )d

d V J A p
J

J
J A

2
( ) d lim ( ) d ( )

2
d d 0,

M M
p

0
, 0 0p

because ϕ ⩾ 0, >J 0 and τ − ∂ ⩾τ( )J2/ ln 0.

(ii) Let τ+
m and τ−

m be two divergent sequences of non-exceptional τʼs, such that

τ τ= ↓+ + r b: /r m mm
and τ τ= ↑− + r a: /r mm

. Make τ τ= r: /r mm
. Then, we compute

∫

∫

Δ

τ

τ
τ τ τ τ

−

=
ˆ

− ˆ − ˆ

τ τ

τ

τ
+ −

− +

−

+

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥ ⎡⎣ ⎤⎦

  



( ) ( ) ( )

( )

( )

( ) d
d V

A
A A

2
d

2
( )

d ( ) , (3)

r
r r r

r m

r
r r r m r m

,

2

rm rm rm m

m m m

rm

rm m

m

m m m m

where (following the notational convention) − = −A A r( ) ( )/r m
2

m
. Now, for every τ we have

τ τ τ τˆ = ˆ A A( ( ) )/ ( ( ) )/r r
2 2

m m
and, recall, the function τ τ̂A ( ( ) )/ 2 is monotonically non-

increasing in τ . Therefore the function τ τ̂A ( ( ) )/r r
2

m m
as a function of τrm

in the interval τ τ− −[ , ]r rm m

tends to a constant, say μ ⩾ 0, over a b[ , ]. In particular τ τˆ − ˆ+ − A A( ( ) ) ( ( ) )r m r mm m
tends to

μ −b a( )2 2 and

∫
τ

τ
τ τ μ

ˆ
→ −

τ

τ

−

+ ⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

( )
( )

A S
b a2

( )
d .

r m

r
r r2

2 2

rm

rm m

m

m m

As a result the right-hand side of (3) tends to zero as wished. □

Proposition 2.2. Let E be a strongly stationary end and let → ∞rm be a divergent
sequence. Suppose that Ω g( , )m rm

converges in ∞C to Ω∞ ∞g( , ) where the Ωmʼs and Ω∞ are

compact connected manifolds with smooth boundary and where Ω ⊂  a b( , )m rm
for each m.

Then, there is a subsequence such that drm
converges in C 0 to a smooth function ∞d satisfying

 Δ= =∞ ∞ ∞ ∞
∞

d d
d

1 and
2

.

Proof. Denote by φ Ω Ω→∞:
m m the diffeomorphisms realizing the ∞C convergence

Ω Ω→ ∞ ∞g g( , ) ( , )m rm
. Also a few times below we make reference to the metrics induced by

g
rm
on Ωm and that, as we said in the introduction, will be denoted by Ωdist g( , )m rm

. Note again that this

is not the same as the distance induced by g
rm
on E and restricted to Ωm and that we denote by distrm

.
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As Ω Ω→ ∞ ∞

∞

g g( , ) ( , )m r

C

m
, then the pull back of the metric functions Ωdist g( , )m rm

, namely

*φ φ φ Ω Ω= × → ∞Ω Ω ∞ ∞dist dist ( , ): [0, )
m g g m m( , ) ( , )m rm m rm

, converge in C 0 to the metric function

Ω Ω× → ∞Ω ∞ ∞∞ ∞( )d : [0, )g, induced by ∞g on Ω∞. Therefore there is m0 such that for any

⩾m m0 and p q, in Ω∞ we have φ φ ⩽Ω Ω∞ ∞
p q p qdist ( ( ), ( ) ) 2dist ( , )g m m g( , ) ( , )m rm

. Now, for

⩾m m0 we have

φ φ φ φ

φ φ

− ⩽

⩽ ⩽Ω Ω∞ ∞

( ) ( ) ( )
( )( )

d p d q p q

p q p q

( ) ( ) dist ( ), ( )

dist ( ), ( ) 2dist ( , ), (4)( )

r m r m r m m

g m m g, ,

m m m

m rm

where the first inequality is just the triangle inequality. Moreover, for all m we have
φ| ◦ | ⩽d br mm

because of Ω ⊂  a b( , )m rm
. This shows that the sequence of functions

φ◦ ⩾d{ }r m m mm 0
, as functions in the compact metric space Ω Ω∞ ∞ ∞

( , dist )g( , ) are uniformly

bounded and 2-Lipschitz (and therefore equicontinuous). By Ascoli–Arzelà there is a
subsequence converging in C 0 to a Lipschitz function that we will denote by ∞d . The limit
function ∞d is indeed 1-Lipschitz, that is | − | ⩽ Ω∞ ∞ ∞ ∞( )d p d q p q( ) ( ) dist ( , )g, , as can be seen

by taking the limit in the first and third terms of (4). During the rest of the proof we will work
with such subsequence (indexed by m again) and the limit function ∞d .

We claim that for any smooth function ϕ of compact support in Ω∞Int ( ) we have

∫ Δ ϕ ϕ− =
Ω

∞ ∞
∞

∞
∞

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ) d

d
V

2
d 0. (5)

By proving the claim one would be showing that = ∞f d is a weak solution of Δ =∞ ∞f d2/ [4],
where we think here the right-hand side as a given Lipschitz function. From the regularity of

weak solutions [4] f would then be in H2,2. But if a positive function f is in H2,2 and satisfies
Δ =∞ f f2/ then f is smooth by a standard bootstrap of regularity. The smoothness of ∞d would
thus follow from proving the claim.

To see (5) for every ϕ we proceed as follows. First observe that it is enough to prove (5)
for any ϕ ⩾ 0 of compact support in Ω∞Int ( ) because any ϕ of compact support can be

written as ϕ ϕ ϕ= −+ +
1 2

with ϕ ⩾+ 0
1

and ϕ ⩾+ 0
2

and of compact support7. Assume then that

ϕ ⩾ 0. In Ωm define the function ϕ ϕ φ= ∘ −:
m m

1 and let ϕ ϕ ϕ¯ = =max { } max { }
m
. Then,

∫ ∫

∫ ∫

∫

ϕ Δ ϕ ϕ Δ ϕ

Δ ϕ ϕ Δ

ϕ Δ

− = −

= − ⩽ −

⩽ − =

Ω Ω

Ω Ω

∞
∞ ∞ ∞

∞

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( )

( ) ( )

( )

( )
d

d V
d

d V

d
d V

d
d V

d
d V

2
d lim

2
d

lim
2

d lim
2

d

lim
2

d 0,

m
r

m r m r r

m
r

r r m r
m

r
r r r

m a b r
r r r

( , )

m m

m m m

m m

m m m
m m

m m m

rm m

m m m

7 To see this choose any non-negative function ϕ̃ of compact support that takes the value ϕ| |sup { } all over the
support of ϕ. Then if we let ϕ ϕ= ˜+

1
and ϕ ϕ ϕ= ˜ −+

2
, then ϕ +

1
and ϕ +

2
are non-negative, have compact support and

their subtraction is ϕ.
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where to pass from the third to the fourth term and also from the fourth to the fifth we used (i)
in proposition 2.1 and where to obtain the last equality we used (ii) in the same proposition.
To conclude that the first integral is indeed zero (and not negative), observe that it is equal to
the third term which is non-negative by (i) in proposition 2.1.

It remains to prove that | | =∞ ∞d 1. Indeed, as ∞d is 1-Lipschitz we have at least
| | ⩽∞ ∞d 1. To show that the norm is indeed one it is enough to prove that: for any

Ω∈ ∞p Int ( ) there is εp such that for any ε ε< p there is εq such that

ε− = =ε
Ω

ε
∞ ∞ ∞ ∞

( ) ( )d p d q p q( ) dist , .( )g,

Let us see this now. Let φ=p p( )
m m

and for every m let γ τ( )
pm

be a geodesic joining p
m
to ∂E such

that τ γ τ= d ( ( ) )r pm m
for all τ⩽ ⩽ d p0 ( )r mm

. Such geodesic must minimize the distance between

any two of its points. Therefore, if for any ε < d p( )r mm
we let γ ε= −εq d p: ( ( ) )

m p r mm m
then we have

ε− = =ε εd p d q p q( ) ( ) dist ( , )r m r m rm m mm m
. Now, if ε ε Ω⩽ = ∂Ω ∞∞ ∞

pdist ( , )/2p g( , ) then there is εm

such that for any ⩾ εm m we have Ω∈εq
m m and =ε

Ω
εp q d p qdist ( , ) ( , )r m m g m m( , )m m rm
. Therefore, one

can take a subsequence of φ ε−
⩾ ε

q{ ( ) }
m m m m

1 (indexed again by m) and converging to a εq satisfying

ε

− = − =

= = =

ε ε ε

Ω
ε

Ω
ε

∞ ∞

∞ ∞

( )( ) ( )
( )

( )
( )( )

d p d q d p d q p q

p q p q

( ) lim ( ) lim dist ,

lim dist , dist , ,( )

r m r m rm m m

g m m g, ,

m m

m rm

as wished. □

Lemma 2.3. Let E be a strong stationary end having cubic volume growth. Then, for every
>V 0, ε > 0, integer ⩾i 2 and > >b a 0 there is ε= >r r V a b i( , , , , ) 00 0 such that for

every ⩾r r0 and every open and connected region  with

⊂ ⩾  a b V( , ), and Vol ( ) , (6)r r

there exists a closed annulus  with ⊃ ⊃  a b( /2, 2 )r and a diffeomorphism

φ → a b: [2 /3, 3 /2]3 satisfying simultaneously

(P1) φ ∂ ⊂ B o a a a( ( , 2 /3) ) ( /2, )r3 and φ ∂ ⊂ B o b b b( ( , 3 /2) ) ( , 2 )r3 ,

(P2) *φ g( )
r

is ε-close in the Ci-norm to the Euclidean metric in  a b[2 /3, 3 /2]3 ,

(P3) φ◦dr is ε-close in the C 0-norm to the distance function to the origin in 3 restricted
to  a b[2 /3, 3 /2]3 .

Proof. The proof proceeds by contradiction. Assume then that there exists >V 0, ε > 0,
⩾i 2, < <a b0 , a divergent sequence → ∞rm and a sequence of connected open regions

m satisfying

⊂ ⩾  ( )a b V( , ), and Vol , (7)m r r mm m

for every m, but such that (also for each m) there does not exist a closed annulus m, with
⊂ ⊂   a b( /2, 2 )m m rm

, together with a diffeomorphism φ → a b: [2 /3, 3 /2]m m3

satisfying simultaneously,

(P1’) φ ∂ ⊂ B o a a a( ( , 2 /3) ) ( /2, )
m r3 , φ ∂ ⊂ B o b b b( ( , 3 /2) ) ( , 2 )

m r3 ,
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(P2’) *φ g
m rm

is ε-close in the C2-norm to the Euclidean metric,

(P3’) φ◦dr mm
is ε-close in the C 0-norm to the distance function to the origin in 3.

We will see in what follows that for sufficiently large m a region m with
⊂ ⊂   a b( /2, 2 )m m rm

and a diffeomorphism φ
m

can indeed be found satisfying

(P1’)–(P3’). In this way a contradiction will be reached.
First, by Liuʼs ball covering property (cf remark 2 [5] with = S a b(there) [ /4, 4 ]rm

(here) and μ = a(there) /16 (here)8, there is an integer N > 0 such that for each m there are
geodesic balls B p a( , /16)g m j,rm

, N= … ⩽j j1, ,
m

, each of which intersects  a b[ /4, 4 ]rm
and

the union of which covers  a b[ /4, 4 ]rm
. What is crucial here is that the bound N for the

number of balls is independent of m. For each m let m be the connected component of the

union ∪ =
=

B p a( , /16)j
j j

g m j1 ,
m

rm
containing the connected set m. We claim that for each m

we have

(a) ⩾ VVol ( )r mm
, and,

(b) N⩽ adiam ( ) /8g m( , )m rm
, and,

(c) ∂ ⩾  a b adist ( , ( /16, 16 ) ) /16r m rm m
.

Indeed, (a) follows from (7) and from the inclusion ⊂ m m; (b) follows from the
general geometric fact that every connected set which is the union of N geodesic balls of
radii D has a proper diameter of at most DN2 ; (c) to show this we note first
that ⊂  a b( /8, 8 )m r . Indeed, if ∈ p m then it belongs to a geodesic ball of
g

rm
-radius a/16 intersecting  a b[ /4, 4 ]r . Thus there is a point q with ⩽ ⩽a d q b/4 ( ) 4rm

such that <p q adist ( , ) /8rm
(i.e. twice the radius). Then by the triangle inequality we

have ⩾ − > − =d p d q p q a a a( ) ( ) dist ( , ) /4 /8 /8r r rm m m
and ⩽ +d p d q p q( ) ( ) dist ( , )r r rm m m

< + =b a b4 /8 8 as wished. On the other hand if a point ′p is in ∂ a b( /16, 16 )rm
then

we have either (i) ′ =d p a( ) /16rm
, or (ii) ′ =d p b( ) 16rm

. Hence for any

′ ∈ q a b( /8, 8 )rm
that is with < ′ <a d q b/8 ( ) 8rm

we have, in case (i),

′ ′ ⩾ ′ − ′ ⩾ − =p q d q d p a a adist ( , ) ( ) ( ) /8 /16 /16r r rm m m
and, in case (ii), ′ ′ ⩾p qdist ( , )rm

′ − ′ ⩾ − = >d p d q b b b a( ) ( ) 16 8 8 /16r rm m
. Thus, ∂ a b a bdist ( ( /8, 8 ), ( /16, 16 ) )r r rm m m

⩾ a/16. As ⊂  a b( /8, 8 )m rm
we obtain (c).

We can then use theorem 1.3 with ω ω= M g u a b g u( ; , , ) ( ( /16, 16 ); , , )m m m m r rm m
,

= Nm m and δ = a/32 to conclude that there is a sequence of compact manifolds Ωm with

boundary with Ω⊂ ⊂   a( , /32)m m g mrm
, such that, after scalings ω λ ω=:m m

2 and λ=u u:m m

if necessary, there is a subsequence of Ω ωg u( ; , , )m r m mm
converging in ∞C to a stationary

solution Ω ω∞ ∞ ∞ ∞g u( ; , , ). By proposition 2.2 one can take a further subsequence for which

8 There is a caveat in this point. To define (here) the analogous to the point p
0
(there) from which distances are

measured proceed as follows. ‘Fill in’ smoothly E by gluing a three-ball B o( , 1)3 and provide the ball with a
Riemannian metric g in such a way that every point ∈ ∂x B o( , 1)3 is at a g-distance one from the origin o (this can
always be done). Then for any ∈p E we have


= −∪∼d p p o( ) dist ( , ) 1E B o g( 3( ,1)), ) . In this setup, when using remark

2, make it with ∪= ∼M E B o(there) ( , 1) (here)3 and =p o(there) (here)
0

.
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the distance functions drm
converge in C 0 to a smooth function ∞d with | | =∞ ∞d 1 and

Δ =∞ ∞ ∞d d2/ . We will use this function ∞d below.
We claim that for any Ω∈ ∂p m we have either ⩽d p a( ) (13/32)rm

or ⩾d p b( ) 3rm
. Let us

see this claim now. Let Ω∈ ∂p m. Then the distance from p to m is less than a/32 and,
because  a b[ /4, 4 ]rm

is a compact inside the open set m, there must be a point q in

⧹  a b[ /4, 4 ]m rm
such that <p q adist ( , ) /32rm

. The point q then belongs to a ball of

g
rm
-radius a/16 intersecting  a b[ /4, 4 ]rm

and therefore there must be a point ′q in the same

ball having either (i) ′ =d q a( ) /4rm
or (ii) ′ =d q b( ) 4rm

. In case (i) we compute

⩽ + ′ + ′ ⩽ + + =d p p q q q d q a a a a( ) dist ( , ) dist ( , ) ( ) /32 /8 /4 (13/32)r r r rm m m m
, and in case

(ii) we compute ⩾ ′ − ′ − ⩾ − − >d p d q q q q p b a a b( ) ( ) dist ( , ) dist ( , ) 4 /8 /32 3r r r rm m m m
.

As a consequence for every Ω∈ ∂ ∞p we have either ⩽∞d p a( ) 13 /32 or ⩾∞d p b( ) 3 .
Therefore as ⊂a b a b[3 /7, 7 /3] (13 /32, 3 ) then for every τ with τ⩽ ⩽a b3 /7 7 /3 the set

τ∞
−d ( )1 is compact in Ω∞Int ( ). Also, as | | =∞ ∞d 1, every τ ∈ a b[3 /7, 7 /3] is a regular value

of ∞d and therefore τ∞
−d ( )1 is a finite union of compact and boundary-less manifolds.

Take a sequence ∈ ⊂ p
m m m and suppose (restricting to a subsequence if necessary)

that p
m
converges to a point ∞p . Because of (7) we have ⩽ ⩽a d p b( )r mm

for every m and

therefore ⩽ ⩽∞ ∞a d p b( ) . Denote by β t( ) the integral curve of the vector field n = ∞d:
passing through ∞p (to simplify notation we make n = ∞d from now on). As n| | =∞ 1, then

for every <t t1 2 we have β β− = −∞ ∞d t d t t t( ( ) ) ( ( ) )2 1 2 1. Thus, β t( ) must reach the
boundary of Ω∞ at two different times (otherwise ∞d could diverge to −∞ and +∞). For this
reason, the range of β∞d t( ( ) ) must contain the interval a b[3 /7, 7 /3]. Also, for every
τ ∈ a b[3 /7, 7 /3] there is a unique t such that τ β= ∞d t( ( ) ) and we can consider the

component of τ∞
−d ( )1 containing β t( ) that we will denote by τ ( ). Note, to be used below,

that any two τ ( )1 and τ ( )2 (τ1 and τ2 in a b[3 /7, 7 /3]) are naturally identified by the unique
diffeomorphism ϕ τ τ→τ τ  : ( ) ( )

, 1 21 2
defined as: ϕ =τ τ p p( )

, 1 21 2
iff the integral curve of n

passing through p
1
also passes through p

2
. In other words τ ( )2 is identified to τ ( )1 by

‘flowing’ τ ( )1 through n a parametric time equal to τ τ−2 1.
Make ∪ τ= τ∈ : ( )a b[3 /7,7 /3] . We claim that every τ ⊂ ( ) is a sphere and that the

induced Riemannian metric, denoted here by τh , is round and of Gaussian curvature

κ τ=τ 1/ 2. Moreover we also claim that the second fundamental form Θτ of τ ⊂ ( ) (in the
direction of n) is Θ τ=τ τh . Let us prove the claim now. Everywhere in what follows we
assume τ ⊂ ( ) . First observe that the mean curvature θτ p( ) at a point τ∈ p ( ) is
calculated as nθ Δ τ= = = =τ

∞ ∞ ∞ ∞p div p d p d p( ) ( ) ( ) ( ) ( ) 2/ ( ) 2/ . Then observe that the
evolution of the mean curvature θτ along any integral curve of n is9

n n n nθ Θ
θ

Θ∂ = − − = − − −τ
τ τ

τ
τ

∞ ∞τ τ
( )

Ric Ric( , )
2

( , ), (8)
h h

2
2

2

and because θ τ=τ 2/ 2 and ⩾∞Ric 0 we obtain n n =∞Ric ( , ) 0 and Θ̂ =
τ

0. Hence Θ τ=τ τh
on each τ ( ) (here =∞ ∞

Ric Ricg ). Moreover from the Gauss–Codazzi equation we obtain, at

9 The equation (8) is a general evolution equation holding every time we have | | =∞ ∞d 1. But, as a matter of fact,
every integral line of n = ∞d is a geodesic (this is easily deduced from | | =∞ ∞d 1) and (8) is just the
focussing equation.
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each τ ( ),

n nκ Θ θ
τ

= − + + − = +τ τ τ
∞ ∞ ∞τ ( ) R Ric R2 2 ( , )

2
,

h

2 2

2

where ∞R is the ∞g scalar curvature. Therefore κ >τ 0 for all τ ∈ a b[3 /7, 7 /3]. This implies

that every τ ( ) is a two-sphere. In addition, we would have κ τ=τ 1/ on every τ ( ) as long
as =∞R 0 all over . To see this we observe first that from the first equation in (1) we have

n n n= ⩾∞ ∞ ∞Ric u u0 ( , ) 2 ( ( ) ) /2 2 and therefore n =∞u( ) 0 all over . Because of this and

because n is perpendicular to every τ ( ) the integral of Δ ω= − | |∞ ∞ ∞ ∞ ∞u uln 2 /2 4 in  is zero
(recall  is the region enclosed by the two surfaces  a(3 /7) and  b(7 /3)). Hence ω∞ is
identically zero in . Thus we have Δ =∞ ∞uln 0 in . Again, multiplying this by ∞uln and

integrating gives ∫ | | =∞ ∞ ∞ u Vln d 0. Hence ∞u is a constant all over . Finally from the

first Einstein equation in (1) we deduce that =∞Ric 0 and therefore that =∞R 0 as wished.
Define now a diffeomorphism ϕ → a b: [3 /7, 7 /3]3 as follows. Fix an isommetry ψ

from the unit sphere in Euclidean three-space into τ = ( 1). Then for any ∈ x a b[3 /7, 7 /3]3

define ϕ ϕ= | |τ τ= =| |x x x( ) ( / )
x1,1 2

where ϕ τ τ= → = | |τ τ= =| |   x: ( 1) ( )
x1, 1 21 2

is the diffeomorphism

introduced before. One directly checks that the map ϕ is an isometry from

 
 a b g( [3 /7, 7 /3], )3 3 into ∞ g( , ). Moreover ϕ◦ = | |∞d x x( ) ( ) , that is, the pull back of ∞d

by ϕ is the distance function to the origin in the Euclidean three-space. Therefore, the annulus

φ ϕ= ˜  a b: ( ( ( /2, 2 ) ) )m m
3 together with the diffeomorphism φ φ ϕ= ˜ ◦

m m
verify (P1’)–(P3’)

for sufficiently large m. We thus get the desired contradiction. □

Proposition 2.4. Let E be a strongly stationary end having cubic volume growth. Then,

there is ˆ >r 00 and a sequence ⩾{ }j j 0 of closed annuli in E such that if we make ˆ = ˆr r2j
j

0,

= …j 0, 1, 2, , then,

(Q1) ⊂ ˆ  (1/2, 8)j rj
for every ⩾j 0, and in addition for every ⩾j 1 one of the two

spheres of ∂j lies in ∩ˆ − (1/2, 1)r j 1j
while the other lies in ∩ˆ + (4, 8)r j 1j

.

(Q2) Every finite union ∪ =
= j J

j J
j1

2 , with ⩾J J2 1, is diffeomorphic to the annulus  [1, 2]3

and the infinite union ∪ =
=∞j

j
j0 covers E up to a set of compact closure.

The proof of proposition 2.4 requires some preparation. Define V0 as


=

( )
V

Vol (4 3, 5 3)

2
,

g

0

3
3

that is, as one half of the volume of the annulus  (4/3, 5/3)3 which, observe, is roughly
speaking the central ‘third’ of the annulus  (1, 2)3 . Now, let ε > 00 be small enough such
that for any r̂ (but no matter which) and for any diffeomorphism

φ → ⊂ ˆ  : [2/3, 6] (1/2, 8)r3 satisfying (P1)–(P3) with ε ε= 0, a = 1, b = 4, i = 2
and = ˆr r , then we have

 φ φ⊂ ⩾ˆ ˆ  ( )( ) ( ) V(8 3, 10 3) (2, 4), and Vol (8 3, 10 3) . (9)r r2 03 3

Note that the annulus  (8/3, 10/3)3 is ‘  (4/3, 5/3)3 magnified by a factor of two’ and is
roughly speaking the central ‘third’ of the annulus  (2, 4)3 . If we now let
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φ= ( )(8/3, 10/3)3 then (9) is the same as

⊂ ⩾ˆ ˆ   V(1, 2), and Vol ( ) .r r2 2 0

In other words the conditions (6) in lemma 2.3 with =V V0, a = 1, b = 4 and = ˆr r2 will be
satisfied. This fact will be used repeatedly in the proof of proposition 2.4.

The following proposition will help to start the iteration in the proof of the proposition
2.4. In the statement below we let ε ε= = = = = =r r V V a b i: ( , , 1, 4, 2)0 0 0 0 , namely the r0

provided by the lemma 2.3 with ε ε= = = =V V a b, , 1, 40 0 and i = 2.

Proposition 2.5. Let E be a strongly stationary end having cubic volume growth. Let >V 00

and r0 be as defined before. Then, there is ˆ ⩾r r0 0 and an open and connected region ̂0 such
that

ˆ ⊂ ˆ ⩾ˆ ˆ  ( ) V(1, 4), and Vol .r r0 0 00 0

As the reader will see the proposition is valid for any V0 and r0 and not just the ones
specified before. Nevertheless it will be only used with the values signaled.

Proof. By the Bishop–Gromov monotonicity, the quotient ∂ E r rVol ( ( , ) )/g
3 is mono-

tonically non-increasing in r and by the assumption of cubic volume growth the limit is non-
zero, say it is μ > 0. Then μ μ= − =limVol ( (2, 3) ) (3 2 ) 19r r

3 3 . Let → ∞rm be an
arbitrary divergent sequence. As μ= >lim Vol ( (2, 3) ) 19 0m r rm m

we can assume

μ⩾Vol ( (2, 3) )r r 1m m
for some μ > 0

1
and for all m. By Liuʼs ball covering property [5]

there is an integer N > 0 such that for every m there is a set of geodesic balls
N= ⩽B p j j( , 1/4), 1 ,...,g m j m,rm

each of which intersects  [2, 3]rm
and the union of which

covers  [2, 3]rm
. Each ball is inside  (1, 4)rm

(this is simple to see) and there must be

necessarily one (say the ball B p( , 1/4)g m,1rm
if they are ordered appropriately) with g

rm
-volume

greater or equal than Nμ /
1

. Define Nμ=V : /1 1
and = B p: ( , 1/4)m g m,1rm

. Then, for all m, we

have

⊂ ⩾  ( ) V(1, 4), and Vol .m r r m 1m m

Now, for every integer ⩾k 1 let ϵ= = = = = =r k r V V k a b i( ) : ( , 1/ , 1, 4, 2)0 0 1 , i.e. the
value of r0 provided by lemma 2.3 when =V V1, ϵ = k1/ , a = 1, b = 4 and i = 2. Also, for
every ⩾k 1 let m(k) be any m for which >r r k( )m k( ) 0 . Then, according to lemma 2.3 (used

with ϵ= = = = = =V V k a b i r r, 1/ , 1, 4, 2, m k1 ( ) and = m k( )), for each ⩾k 1 there is

a closed annulus ⊃ k m k( ) together with a diffeomorphism φ → : [2/3, 6]
k k3

satisfying (P1)–(P3). Because of this, the sequence  g( , )k rm k( )
converges in C2 to

 
 g( [2/3, 6], )3 3 and φ◦dr km k( )

converges in C 0 to the distance function to the origin.

Then, for sufficiently large =k k0 we have

φ ⊂ ( )(4 3, 5 3) (1, 4),
( )k rm k0

3
0
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and




φ ⩾ = 

( )( )
( )

VVol (4 3, 5 3)
Vol (4 3, 5 3)

2
.

( )r k

g

0m k0 0
3

3
3

The proposition then follows by defining ˆ =r r ( )m k0 0
and φˆ = ( )(4/3, 5/3)

k0 0
3 . □

We are ready to give the proof of proposition 2.4.

Proof of proposition 2.4. We are going to repeatedly use lemma 2.3 and every time we use
it we do with =V V0, ε ε= 0, a = 1, b = 4 and i = 2. The reader must keep that in mind.

First, the conditions (6) in lemma 2.3 are automatically satisfied when we make = ˆr r0

and = ˆ 0, where r̂0 and ̂0 are given by proposition 2.5. Lemma 2.3 then implies that
there is  and φ → : [2/3, 6]3 satisfying (P1)–(P3). Set φ φ=:

0
and define = :0 .

Second, let = ˆ = ˆr r r: 21 0 and φ= ( (8/3, 10/3) )
0

3 . Then deduce from the definition

of V0 and ε0 that the conditions (6) in lemma 2.3 are again satisfied (see the comments before
the proposition 2.5). Lemma 2.3 then implies that there is  and φ → : [2/3, 6]3

satisfying (P1)–(P3). Make φ φ=:
1

and define = :1 .

Third, make = ˆ = ˆ = ˆr r r r2 22 1
2

0 and φ= ( (8/3, 10/3) )
1

3 . Then deduce from the

definition of V0 and ε0 that the conditions (6) are again satisfied. Lemma 2.3 then implies that
there is  and φ → : [2/3, 6]3 satisfying (P1)–(P3). Make φ φ=:

2
and

define = :2 .
This procedure can be continued indefinitely obtaining in this way a sequence of closed

annuli j, ⩾j 0. Each j has of course two boundary components diffeomorphic to a two-

sphere. Denote by ∂−j the closest to ∂E and by ∂+j the farthest. With this notation we have

⊂ ∂ ⊂ ∂ ⊂− +     (1 2, 8), (1 2, 1), and (4, 8). (10)j r j r j rj j j

Observing that =
+

 ( )a a a a2 , 2 ( , )r r1 2 1 2j j 1
for any >a a2 1 then we have

⊂ ∂ ⊂ ∂ ⊂+
−

+
+

+     (1, 16), (1, 2), and (8, 16). (11)j r j r j r1 1 1j j j

Thus (10) and (11) imply

∩ ∩∂ = ∅ ∂ = ∅−
+

+
+   , and , (12)j j j j1 1

and as φ ( (8/3, 10/3)
j

3 is shared by j and +j 1 then we also have ∩ ≠ ∅+ j j 1 . By

(12) none of the annuli j and +j 1 can be contained inside the other and we must have

∂ ⊂ ∂ ⊂+
+

−
+   , and .j j j j1 1

This and (10) imply (Q1). We explain now (Q2). First it is straightforward that that every

finite union ∪ =
= j J

j J
j1

2 is also a closed annulus and that the infinite union ∪ =
=∞j

j
j1 is

diffeomoprhic to 3 minus an open ball. Then we observe that ∪ =
=∞j

j
j1 is complete. This is

because every Cauchy sequence on it must also be Cauchy in E and therefore uniformly

bounded. Thus the sequence must be inside a finite union ∪ =
= j J

j J
j1

2 which is complete. Hence

the sequence must converge to a point in∪ =
=∞j

j
j1 . As E is complete and also diffeomorphic to

3 minus a ball then it is standard that ∪ =
=∞j

j
j1 must cover E up to a set of compact closure.

For completeness we indicate a proof of this fact in the auxiliary proposition 2.6 below. □
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Proposition 2.6. Let (M, g) be a complete Riemannian manifold where M is diffeomorphic

to  ⧹B o( , 1)3
3 . Suppose that Ω ⊂ M is also diffeomoprhic to  ⧹B o( , 1)3

3 and that Ω g( , )

is complete. Then —Ω⧹M is compact in M.

Proof. First note three simple properties derived from the completeness of (M, g) and ω g( , ) 10:
(i) every C1-curve γ in M starting at a point in Ω and ending at a point in Ω⧹M must cut Ω∂ at

some point, (ii) for any sequence Ω∈p
m

such that Ω∂ → ∞Ω pdist ( , )g m( , ) then also

∂ → ∞p Mdist ( , )M g m( , ) , and (iii) for any two sequences q
m

and p
m

such that

∂ → ∞q Mdist ( , )M g m( , ) and ∂ → ∞p Mdist ( , )M g m( , ) there is a sequence of curves γ
m
joining p

m

and q
m
for every m such that γ ∂ = ∞Mlim dist ( { }, )m M g m( , ) (use  ∼M B o( ( , 1))3

3 ).

If —Ω⧹M is not compact then there is a sequence Ω∈ ⧹q M( )
m

with ∂ → ∞q Mdist ( , )M g m( , ) .

On the other hand let Ω∈p
m

be a sequence such that Ω∂ → ∞Ω pdist ( , )g m( , ) and therefore by (ii)

with ∂ → ∞p Mdist ( , )M g m( , ) . By (iii) one can consider curves γ
m
joining p

m
to q

m
for which

γ ∂ = ∞Mlim dist ( , )m M g m( , ) . But by (i) every γ
m
must cut Ω∂ and therefore we must have

γ Ω∂ ⩽ ∂ ∈ ∂ < ∞M p M pdist ( , ) max {dist ( , ): }M g M g( , ) ( , ) for every m. We thus reach a

contradiction. □

With the help of lemma 2.3 and proposition 2.4 we can now prove the main result of
part II.

Theorem 2.7. Let E be a strongly stationary end having cubic volume growth. Then, E
is WAF.

Proof. Assume that integers ⩾i 2 and ⩾l 1 are given, as well as a divergent sequence
→ ∞rm ( ⩾m 1). According to definition 1.2, to show weakly asymptotic flatness we need to

show the existence of open and connected regions Ωm for which (W1)–(W3) hold. To define
the Ωm we will rely on the following claim: for any ⩾k 4 there is >m 0k such that for any

⩾m mk there is Ω̃k m, and φ Ω˜ − + → ˜ k k: (1/2 1/ , 2 1/ )
k m

l
k m, ,3 satisfying

(W1’) Ω⊂ ˜ (1/2, 2 )r
l

k m,m
for every ⩾m mk, and,

(W2’) *φ̃ g( )
k m r, m

is k1/ -close in the Ci-norm to the Euclidean metric, and,

(W3’) φ◦ ˜dr k m,m
is k1/ -close in the C 0-norm to the distance function to the origin.

Once the claim is proved the construction of the Ωm regions is as follows (assume,
redefining mk if necessary, that >+m mk k1 , for all ⩾k 1). For m between m1 and −m 12 let

Ω Ω= ˜
m m1, ; for m between m2 and −m 13 let Ω Ω= ˜

m m2, ; for m between m3 and −m 14 let

Ω Ω= ˜
m m3, and so on (for m between 1 and −m 11 define Ωm as any annulus containing

 (1/2, 2 )r
l

m
). With this definition of Ωm, (W1’)–(W3’) imply (W1)–(W3) directly.

We now prove the claim. Because → ∞rm and because of (Q2) we can assume without

loss of generality that ∪⊂ =
=∞ (1/2, 2 )r

l
j
j

j1m
. Then, for every m define j

m
such that

10 These are straightforward and are left to the reader.
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ˆ < ⩽ ˆ+( ) ( )r
r

r8 2
2

8 2 . (13)j m j
0

1
0

m m

Recalling that ˆ = ˆr r2j
j

0, this says that ˆ <r r8 /2j mm
. But then, from (Q1) we obtain that

∪ ∩ = ∅=
= ⎜ ⎟⎛

⎝
⎞
⎠ ( ) 1

2
, 2 .j

j j

j r
l

1
m

m

Also from (13) we get < ˆ+ +r r2 2l
m

j l 6
0

m , which implies < ˆ + +r r2 /2l
m j l 5m

. But then from (Q1) we

obtain that

∪ ∩ = ∅= + +
=∞ ⎜ ⎟⎛

⎝
⎞
⎠ ( ) 1

2
, 2 .j j l

j
j r

l
5m m

We conclude that

∪⊂ ⊂
ˆ

ˆ ⊂= +
= + + +

+ +
+⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠   ( )

r
r

1

2
, 2

2
, 8

1

32
, 2 , (14)r

l
j j
j j l

j

j

j l r
l

1
4 1

4
3

m m

m m

m m

where the second inclusion is because of (Q1) and the third is because ⩽ ˆ +r r/32 /2m j 1m
and

ˆ ⩽+ +
+r r8 2j l

l
m4

3

m
which are deduced from (13).

As the E end has cubic volume growth, then →∞ lim Vol ( (1/2, 2 ) )r r r
l

m m m
is positive and

we can assume that μ⩾ >Vol ( (1/2, 2 ) ) 0r r
l

m m
for all m (see a similar argument in the

proof of proposition 2.5). Now, for every integer ⩾k 4, let εr V a b i( , , , , )0 0 0 be the r0

provided by lemma 2.3 with the following values of εV a, ,0 0 , b and i: μ=V0 , ε = k1/0 ,

=a 1/32, = +b 2l 3 and i = 2. As we only let k vary we can denote ε =r V a b i r k( , , , , ) ( )0 0 0 0 .
Then for every ⩾k 4 define mk such that for every ⩾m mk we have ⩾r r k( )m 0 . Then for

every ⩾m mk the region ∪= = +
= + + : Int ( )j j

j j l
j1

4

m

m is open by definition, connected because of

(Q2) and verifies (6) by (14). We can then apply lemma 2.3 and conclude that there is and

φ → a b: (2 /3, 3 /2)3 satisfying (P2)–(P3) with, as we are assuming, ε = k1/0 . With all

this at hand define Ω φ= − + k k( (1/2 1/ , 2 1/ ) )k m
l

, 3 for any ⩾m mk. With this definition
(W2’) and (W3’) follow directly from (P2) and (P3), and (W1’) is easily seen to follow
from (P3). □
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